
J .  Fluid Mech. (1992), vol. 241, p p .  333-347 
Printed in Great Britain 

333 

Uniformly travelling water waves from a dynamical 
systems viewpoint : some insights into bifurcations 

from Stokes' family 

By C. BAESENS A N D  R. S .  MAcKAY 
Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, 

Coventry CV4 7AL, UK 

(Received 31 August 1990 and in revised form 28 November 1991) 

Numerical work of many people on the bifurcations of uniformly travelling water 
waves (two-dimensional irrotational gravity waves on inviscid fluid of infinite depth) 
suggests that uniformly travelling water waves have a reversible Hamiltonian 
formulation, where the role of time is played by horizontal position in the wave 
frame. In this paper such a formulation is presented. Based on this viewpoint, some 
insights are given into bifurcations from Stokes' family of periodic waves. It is 
demonstrated numerically that there is a 'fold point ' a t  amplitude A ,  x 0.40222. 
Assuming non-degeneracy of the fold and existence of an associated centre manifold, 
this explains why a sequence of p/q-bifurcations occurs on one side of A,, with 
0 < p/q < i, in the order of the rationals. Secondly, it explains why no symmetry- 
breaking bifurcation is observed at A,, contrary to the expectations of some. Thirdly, 
it  explains why the bifurcation tree for periodic uniformly travelling waves looks so 
much like that for the area-preserving HBnon map. Fourthly, i t  leads to predictions 
of a rich variety of spatially quasi-periodic, heteroclinic and chaotic waves. 

1. Introduction 
The study of waves propagating on the surface of water has attracted a lot of 

attention from the scientific community for more than a century, in particular the 
study of uniformly travelling waves, those which are steady in a horizontally moving 
G-elilean frame. A question of considerable activity concerns the classification of such 
surface waves and their bifurcations. 

In  this paper we concentrate on gravity waves of permanent form on the free 
surface of an ideal fluid (incompressible and inviscid) of infinite depth with no surface 
tension. We suppose that the flow is two-dimensional, irrotational and in a vertical 
plane. 

Many interesting results have been found for this problem. In  particular, there is 
a family of periodic waves, with one trough and crest per period, which connects the 
infinitesimal sinusoidal waves of linear theory with waves with a 120" crest (Amick, 
Fraenkel & Toland 1982). Numerically, this seems to be a smooth family (e.g. 
Longuet-Higgins 1985 ; Longuet-Higgins & Fox 1978), with two parameters, suitable 
ones being the wavelength A and the trough to crest height 2a, though because of a 
scaling symmetry only the combination A = ak is important (where k = 2n/A).  The 
parameter A runs from 0 at the flat state to A,,, x 0.4434 for the wave with the 120" 
(Longuet-Higgins 1984a). We call it Stokes'family, after his pioneering work on the 
problem. 
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Bifurcations of other periodic uniformly travelling waves with more than one crest 
and trough per period, from Stokes’ family, have been observed numerically, for A 
in the range (A,,A;],  where A ,  w 0.402233, A; z 0.404961 (e.g. Chen & Saffman 
1980; Saffman 1980; Longuet-Higgins 1985,1986; Zufiria 19873; Aston 1991). These 
bifurcations can be characterized by a coprime pair of integers ( p ,  q),  1 < p < q. 
The difference between the branching wave and the Stokes wave has the form 
efipks/*P(x, y) to first order, with P(x+A, y )  = P(x,  y ) .  These numerical results 
suggest there is a dense set of bifurcation points Aplq of type @ , q )  in the interval 
(A,,A;],  in the same order as the rationals p / q  in ( O , + ] .  Furthermore, secondary 
bifurcations of periodic waves are observed from many of these new branches, and 
in fact an apparently infinitely branching bifurcation tree. On the other hand, no 
bifurcations were observed for 0 < A < A,, and despite searching, no bifurcation was 
found at A ,  (Chen & Saffman 1980; Longuet-Higgins 1985; Zufiria 1987b). This was 
found strange by some authors, as superharmonic bifurcation (i.e. generating 
solutions of the same period) breaking the reflectional symmetry might have been 
expected (though Longuet-Higgins (1986) did not hold that view). 

The above numerical results are strongly reminiscent of the generic bifurcations of 
periodic orbits for reversible Hamiltonian systems of two degrees of freedom and the 
related reversible area-preserving mapping, such as the Hdnon map (H6non 1969). It 
is the aim of our paper to explain the connection. 

We do this by finding a reversible Hamiltonian formulation for uniformly 
travelling water waves, and demonstrating numerically the existence of a fold in 
Stokes’ family. Under the following two assumptions : 

1.  the fold has a finite-dimensional centre manifold on which the Hamiltonian 
formulation defines a smooth flow ; 

2. the fold satisfies the non-degeneracy conditions of Rimmer (1983) (which are 
generic for smooth reversible Hamiltonian systems) ; 

we deduce the existence of a bifurcation scenario very similar to that for the HBnon 
map. In  particular there is a dense interval of bifurcation on one side of A ,  and no 
symmetry-breaking bifurcation a t  A,. Furthermore, this point of view leads to many 
predictions about the occurrence of other sorts of uniformly travelling water waves, 
such as quasi-periodic, heteroclinic and chaotic waves. The paper concludes with 
some conjectures about the almost highest waves, and comments. 

2. Hamiltonian formulation 
We denote the velocity of a uniformly travelling irrotational wave by c (relative 

to fluid a t  infinite depth), the surface elevation by q(x) ,  -GO < x < co, and the 
velocity potential and stream function (in the frame of the wave) by $(x, y )  and @(x, y) 
respectively, y < q(x), -co < x  < co; here x is the horizontal coordinate in the 
frame of the wave and y is the vertical coordinate. The velocity field (u, v) is given 
by u = #z = @v,  v = $21 = - @x and satisfies Laplace’s equation : 

A@ = A$ = 0, - 00 < x < 00, - 00 < y 6 v(x), 

with the following boundary conditions : at the bottom 

on the surface y = q(x )  
(u,v)+(-c,O) as y+-00; 

@ = constant, equivalently uqs = v (kinematic condition), 

t(uz +vz) + g r  = K ,  constant (Bernoulli condition), 
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where g is the acceleration due to  gravity. We choose the timescale so that g = 1, and 
the origin of y so that K = !$ (then the mean level, when defined, is zero). Without 
loss of generality, @ = 0 on the surface. 

A Hamiltonian formulation for the time evolution of the whole wavefield was 
found by Zakharov (1968). We do not consider temporal stability of uniformly 
travelling waves. Nonetheless, we take a dynamical viewpoint: we will regard the 
equations for uniformly travelling water waves as a dynamical system for quantities 
defined on a vertical line, where the role of time is played by the horizontal 
coordinate x .  

Formally, the transformation to a dynamical system in x is straightforward. For 
example, let M be the space of triples (7, @, v )  such that 7 E R, @ and v are functions 
from ( -  m,7] --f R, e V + - c  and v + O  as y - f -  00, @(7) = 0 and +(v2+@l)+7  = g2 at 
y = 7. Then the equations for uniformly travelling water waves can be rewritten as 
the following evolution equations on M :  

7s = v/@c/y, $2 = -vy us = @till for Y E ( - c o , ~ ) .  

A similar formulation can be made with $ and u as the dependent variables. This will 
turn out to  have the structure of a reversible Hamiltonian system. 

We recall the general definition of a reversible Hamiltonian system. A symplectic 
manifold is a manifold M with a closed non-degenerate? 2-form w ,  called the 
symplectic form. Given a function H : M +  R, called a Hamiltonian, the symplectic 
form induces a vector field X, on M, the unique one such that 

w ( E i X H )  = cw(E) ,  v6. (1) 

It is called a Hamiltonian vector jield. If there exists an anti-symplectic involution 
S : M + M  (i.e. S2 is the identity and S reverses the sign of w )  such that H o S  = H ,  the 
Hamiltonian vector field is said to be reversible, because then X ,  O S  = -DS*X,. So 
to demonstrate a reversible Hamiltonian formulation for a problem, we need to 
specify M ,  w ,  H and S, such that i = X,(Z)  is equivalent to the equations for the 
problem. 

We conjectured such a formulation for uniformly travelling water waves back in 
1985, and some of the consequences of this conjecture formed the basis for the work 
of Zufiria (1987a, 6 ) .  Recently, Mielke (1991) found a reversible Hamiltonian 
formulation for the case with surface tension and finite depth. Although the limits 
are singular, it turns out not to  be hard to extend his approach to  infinite depth 
and/or zero surface tension. We will treat now the cases of infinite depth with and 
without surface tension. 

It is well known (e.g. Whitham 1974) that  uniformly travelling water waves with 
surface tension K and speed c on infinite de th, with Bernoulli constant #c2, can be 
derived from Luke's variational principle &fL(+, $z, 7 , ~ ~ )  dx = 0, where 

Jq$, $,,7, 7s) = $ T 2 + K [ ( 1  + 7 9 -  11+ a($:+$:-C2)dY# s_, 
When K + 0, one can Legendre transform and write this in Hamiltonian form. It is 
convenient first to standardize the domain for the function $, and furthermore to 
replace it by the rest frame velocity potential. So let Y = y - r ( x )  be the vertical 
height below the surface, and 

F(x,  Y )  = $ [ x ,  7 ( x )  + r] + c x .  
t w non-degenerate means that w ( 5 , q )  = OVE implies q = 0. 
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L(F, F,, q, 7,) = $q2 + K [ (  1 +qE)i- 11 + ~ [ ( F , - ~ , F , - c ) ~  +F2,-c2] dY. 
--m 

We obtain the conjugate variables 

U = GL/SF, = F , - ~ , F Y - ~ ,  

= aL/aq, = KqZ/( i  +r;)t- UFY dY. 

The variable U has the interpretation 

U(X, Y )  = U(X, + Y ) ,  

and w(x) has the interpretation of the sum of the vertical component of the surface 
tension force a t  (x, q(z))  and the flux of vertical momentum across the vertical line 
through z. The above relations can be inverted, yielding 

F ,  = qSFy+ U+c, 
7, = W ‘ / ( K 2  - W‘2)f, 

where w’=w+ UF,dY L 
Taking the Legendre transform, we obtain the Hamiltonian 

H ( F ,  u , q , w )  = K - ( K ~ - w ’ ~ ) ~ - ~ ~ +  g((U+c)2-F2y)dY, 
J --oo 

which can be recognized as Benjamin’s flow-force invariant 8, a quantity which is 
already known to be conserved for uniformly travelling waves (Benjamin 1984). The 
phase space M for this Hamiltonian system consists of all quadruples (F ,  U, 7, w), 
where F , U : ( - w , O ] + R ,  F ( Y ) ,  Fy(Y)+O,U(Y)+-c as Y + - m ,  and ~ , w E [ W ,  with 
w‘ E ( - K ,  K )  satisfying the constraint 

U, w’/(K~- w’~):  = F,,, ( 2 b )  

where subscript 0 here and hereafter denotes the value at  the surface Y = 0. The 
symplectic form is the restriction to M of the standard one 

w = dw A dq+ dU A dFdY, @, 
which is non-degenerate on M ,  because the constraint can be regarded as fixing Fyo 
which does not enter w .  The equations of motion come out in the form 

qz = aH/aw = W ’ / ( K 2  - ~ / ~ ) f ,  

which can be seen to be equivalent to the usual ones. The equation of motion for w 
expresses vertical momentum balance, and is equivalent to the Bernoulli condition. 
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The fourth equation is equivalent to Laplace's equation in the bulk, and using the 
first equation, the constraint ( 2 b )  is equivalent to the kinematic condition. The 
constraint (2 b)  is necessary to eliminate a delta-function surface contribution which 
would otherwise appear in the last equation. We are grateful to Tom Bridges for 
pointing out that we needed to deal with this and for suggesting the above solution. 

Furthermore, the system is reversible, with respect to the following involution 

S(F, u, 3 ,  w )  = (-F, u, 3 ,  -w) .  

The limit K + O  is singular: although the variational principle from which we 
started is good, the Legendre transform cannot be carried out. Nevertheless, a 
Hamiltonian formulation can still be found. We choose as Hamiltonian 

as phase space the manifold 2M' defined by replacing the constraint ( 2 b )  by the 
following two constraints : 

w = -la UF,dY, 

q+)(V+F$),  = &', 
and the same symplectic form w .  It can be checked that o restricted to M' is still non- 
degenerate, provided U, += 0 (this will come out automatically from the following 
calculation too). We now calculate the resulting equations of motion from the general 
definition (1)  of a Hamiltonian vector field. 

The constraints imply that associated to any perturbation (SU, SF) in (U ,  F), we 
have perturbations 87 = - V,SV,-FyoSFyo, 

( Uy SF - Fy SU) dY - U, SF,, 
Sw = 

in '7 and w. Then taking a pair of such perturbations (SU,SF) and ( U , F ) ,  

w((SU,SF), ( U , P ) )  = dwq-thSq+ 

(U, SF -Fy SU) dY- U, SF, +w{&SU, +Fyo SF,,} + r SUF - UdF dY. 
--oo 

Also 

dH(SU,SF) = -qSq+ (U+c)SU-FySFydY 
J -m 

= ~ { ~ S & + F y o S F y , } + ~  ( (U+c)SU+FyySF)dY-FyoS~o.  
-m 

The equation w((SU, SF), ( U , F ) )  = cW(SU, SF), V(SU, SF), can be seen to have a unique 
solution for U, 9 0, namely 

F = qF,+U+c, 

U = qUy-FYy, 

li = F Y O I V , ?  
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These correspond to the correct equations for uniformly travelling waves with no 
surface tension, with 4 interpreted as yZ, and so on. Thus our goal is achieved. 

It should be possible to use the same technique to obtain a Hamiltonian 
formulation for water waves with no surface tension on finite depth. 

3. Well-posedness 
A problem with all dynamical systems formulations of elliptic problems is that 

the resulting evolution equations are ill-posed. The essence of the problem is that the 
solution of Laplace's equation Aq5 = 0 with (#, q5.J given on x = 0, q5 = 0 on y = 0 and 
1, while existing and unique, is not continuous with respect to  the initial data (q5,q5,) 
on x = 0. However, in many examples a finite-dimensional submanifold on which the 
evolution equations are well-posed can be found, e.g. Benjamin (1967) for the 
Benjamin-Ono equation, and Kirchgassner (1982) using centre manifold theory. A 
centre manifold is a local invariant manifold in the neighbourhood of some particular 
solution, tangent to the set of neutral infinitesimal perturbations (where the 
definition of neutral depends on the context). This idea has been applied to  many 
similar problems now (see the surveys of Kirchgassner (1988) and Mielke (1991); also 
Amick & Kirchgassner 1989; Amick & Turner 1989). 

Two major problems remain with the centre manifold approach, nonetheless. The 
first is that  current proofs do not apply to the case of infinite depth, though whether 
there is a genuine obstruction is an open question. The second is that  applications so 
far have been limited to  a neighbourhood of a flat state. This is not a fundamental 
problem, however. In  finite-dimensional Hamiltonian systems, if one finds, for 
example, a periodic solution with a normal Floquet multiplier+ 1 (see $4 for a 
definition), there exists an associated centre manifold, tangent to the subspace of 
perturbations corresponding to  the Floquet multiplier + 1 .  We are going to assume 
the same holds in our case, and that our Hamiltonian formulation defines a smooth 
flow on such a centre manifold (assumption 1 of $1) .  

Although we will not require i t  in this paper, in fact we conjecture that a much 
stronger property frequently holds, namely that for many of these ill-posed evolution 
problems there exists a finite-dimensional manifold in the phase space, on which the 
evolution equations define a smooth flow and which contains all the bounded 
solutions of the problem. Any such manifold of minimal dimension we propose to  call 
an essential manifold. In  the Hamiltonian context, we also require the essential 
manifold to be a symplectic submanifold, so that the flow on it is still Hamiltonian. 
The idea is a conservative analogue of inertial manifolds, which are finite-dimensional 
manifolds which attract exponentially all solutions of a dissipative semi-flow. 
Existence of an essential manifold for some elliptic systems has recently been proved 
by Mielke (1990). Although we suspect that  an essential manifold does not strictly 
speaking exist for the uniformly travelling water-wave problem, because it looks as 
if its dimension would have to be infinite to include any waves with a 120' crest (see 
$7), we believe that one does exist if any neighbourhood of all such waves is excluded. 

4. Dynamical systems interpretation of bifurcation results 
We have given a Hamiltonian formulation for uniformly travelling water waves as 

evolution equations in x. The initial-value problem may not be well-posed, but under 
assumption 1 ($1), if we find a fold in the set of periodic solutions then there will be 
a finite-dimensional centre manifold on which they define a smooth flow. 
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It is important to be clear about what is meant by a fold in the set of periodic 
solutions. For an  autonomous Hamiltonian system, i t  is a periodic solution for which 
there exist arbitrarily small deformations which are also periodic solutions, of close 
but not necessarily the same period, but not just a phase shift, which have the same 
energy to first order. We will see in the next section how to interpret this in the 
context of water waves. 

An alternative description of a fold can be given in terms of the Floquet multipliers 
of a periodic solution. These are the complex numbers a such that there exists a 
solution of the linearized equations about the given periodic one which is also an 
eigenvector of the operator of translation by one period with eigenvalue a. Since for 
a periodic solution of an autonomous Hamiltonian system there is always a Floquet 
multiplier + 1 corresponding to phase shift, and its generalized eigenspace usually 
contains another vector corresponding to continuation of the solution as the energy 
changes, one defines the normal Floquet multipliers to be the solutions of the above 
problem restricted to a given energy, and identifying any two perturbations which 
differ only by a phase shift. Then a fold can be characterized as a periodic solution 
with a normal Floquet multiplier+ 1. For a Hamiltonian system the Floquet 
multipliers come in reciprocal pairs ( a , a - ' ) , a ~ C ,  and +1  is a multiplier of even 
(algebraic) multiplicity 2 2. For symmetric solutions of reversible systems this 
follows alternatively from reversibility. It is convenient t o  take account of this fact 
by defining the residues of a periodic orbit to  be the quantities 

R = 2(2-a-a-'), 

corresponding t o  each pair of normal Floquet multipliers. 
Generically (meaning if a certain finite number of combinations of Taylor 

coefficients are non-zero), the multiplicity of the Floquet multiplier+l a t  a 
symmetric fold of a finite-dimensional reversible Hamiltonian system is 4, so there 
is a four-dimensional centre manifold, and one of the following three results hold 
(depending on the signs of the combinations of Taylor coefficients; Rimmer 1983). 

SC (saddle-centre bifurcation) (usually, but misleadingly in the Hamiltonian 
context, called a saddle-node bifurcation). The fold solution is contained in a one- 
parameter family s, of symmetric periodic solutions (with dS,/dt 9 0) ,  along which 
H - bt2, some b 8 0, and the (only) residue R - at, some a 9 0 (where t = 0 
corresponds to the fold and without loss of generality the energy of the fold is chosen 
to be zero), and there are no other nearby periodic solutions which are small 
deformations of the fold solution. 

SB1 (supercritical symmetry breaking). The fold solution is the intersection of two 
one-parameter families of periodic solutions, one of which, S,, consists of symmetric 
solutions and satisfies H - ct, R N dt, and the other, A,,  forms a pair of asymmetric 
solutions such that A_, is the reflection of A,,  H - et2 and R N ft2, and f > 0, ced < 0, 
and there are no other nearby periodic solutions which are small deformations of the 
fold solution. 

SB2 (subcritical symmetry breaking): The same as SB1 but with f < 0, ced > 0. 
Note that if the conditions of reversibility of the system and symmetry of the fold 

solution are dropped then SC becomes the sole generic possibility (Meyer 1970). 
If we assume (assumption 2 of 1) that a fold point is generic in the above sense, 

then one of the above three possibilities must occur. We will find in the next section, 
numerically, a fold point for the uniformly travelling water-wave problem which is 
a turning point (suitably interpreted) in a family of symmetric periodic solutions, 
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FIGURE 1.  The typical behaviour of the Floquet multipliers of a curve of periodic orbits of a 
two-degrees-of-freedom Hamiltonian system. 

and hence cannot be in case SB1 or SB2. Thus, under assumption 2 i t  must be in case 
sc . 

Let us examine two of the primary consequences of SC. A periodic solution can 
bifurcate from a given one only if the latter has a Floquet multiplier at a root of unity 
(an application of the implicit function theorem). Thus bifurcations can happen only 
if there is a residue 0 < R < 1 .  Typically, there is a bifurcation of type (p, q )  every 
time a pair of Floquet multipliers pass through exp( +2nip/q), that  is every time a 
residue passes through sin2 np/q (Meyer 1970; Rimmer 1983). Hence on one side of 
a saddle-centre bifurcation (R > 0) we expect a dense set of bifurcations to occur in 
an interval (0 < R < l ) ,  while the normal Floquet multipliers traverse the unit circle 
(figure 1). The periodic solution is said to be elliptic for 0 < R < 1, regular hyperbolic 
for R < 0, and inverse hyperbolic for R > 1.  Secondly, there is no symmetry breaking 
at a saddle-centre bifurcation. These consequences of a saddle-centre bifurcation 
agree perfectly with the observed bifurcation results previously reported for water 
waves. So to  explain the results, all we have to do, subject to assumptions 1 and 2, 
is to demonstrate the existence of a fold in the set of symmetric periodic orbits. 

For the limit of the flat wave ( A  = O ) ,  one can easily show that + 1 is the only 
multiplier and has multiplicity 2, though for finite depth h one obtains the additional 
multipliers ,u = eKA, for all solutions K of C ~ K  = g tan Kh, where h is the solution of 
2nc2/h = g tanh 27ch/h(c2 < gh). So for small A ,  the dynamics is essentially that of a 
one degree of freedom Hamiltonian system and no bifurcation can happen. The 
possibility of bifurcation from the Stokes wave requires the existence of a second pair 
of Floquet multipliers lying on the unit circle. We will find this at larger amplitude 
in the next section. 

Note that the same behaviour of the multipliers was obtained by Zufiria (1987a) 
in a two degree of freedom Hamiltonian system resulting from a truncation of the full 
system for small-amplitude shallow water waves. Furthermore, Zufiria observed 
qualitatively similar bifurcation diagrams for both the truncated model and the full 
system for infinite depth (Zufiria 1987 b ) ,  supporting the validity of our assumptions. 

5. Existence of a fold 
We now present numerical evidence for a fold at A,,. 
Diagrams showing quantities such as the velocity c or the mean energy per unit 

horizontal length E in the rest frame against the amplitude A of the Stokes wave do 
not show any turning points at A ,  (Chen & Saffman 1980; Longuet-Higgins & Fox 
1978). In  our case, the Hamiltonian is the flow-force invariant S ,  but it does not show 
a turning point either (as we shall show in figure 3). This might appear to  contradict 
the idea of a fold. 

However, what is actually done in most numerics on uniformly travelling water 
waves is to follow a path of waves of fixed period, allowing the wave speed c to vary. 
The velocity c should be regarded as an external parameter to  the dynamical system 
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-s 
FIGURE 2. Conjectured picture of the surface Y of Stokes waves over the (c,S)-plane, showing a 

fold, the path y of waves of a fixed wavelength, and their projections onto the (c,S)-plane. 

(entering via the boundary conditions). The definition of a fold requires finding 
nearby solutions with the same energy to first order and the same value of all 
external parameters, for close to but not necessarily the same period. Hence we need 
to convert the results for fixed wavelength to results for fixed speed. 

We will obtain a better understanding of the bifurcation problem if we represent 
the solutions over a higher-dimensional space, namely the space (c,  8). We represent 
Stokes’ family of periodic solutions as a surface 9 in a three-dimensional bifurcation 
diagram, taking u2 as a measure of the size of the waves and (c, 8) as parameter plane. 
Note that the choice of c and 8 is crucial; we do not get the same results with c and 
E (see $8). 

We claim that the surface Y has a fold in its projection to ( c ,S ) ,  and the path of 
Stokes’ waves of given wavelength A pass over the fold precisely a t  A ,  (figure 2). 

Since we are in the case of infinite depth, this is easy to verify numerically because 
of the scaling symmetry. We recall the symmetry properties of the problem of 
uniformly travelling water waves on fluid of infinite depth (see Benjamin & Olver 
(1982) for a full report of these properties). If [c , y ( z ) ,$ - ( x , y ) ]  defines a uniformly 
travelling water wave, then so do the following: 

[ c , ~ ( z - ~ ) + E ,  $(x-S,y-eS)], V ~ , S E R  (translation symmetry), 

[c, y( -z), $-( -z, y)] (reflection symmetry), 

[Pc,P2 r (z /P2) ,  P3 $ - (x /P2 ,  YIP”)],  V P E  R\{ol (scaling symmetry). 

From the definition of f l  and the scaling symmetry, we see that if a wave exists for 
parameter values (c ,  8) then a similar rescaled wave exists for parameter values 
(Pc ,$8 ) ,  for all /3 > 0. 

It follows that if the surface Y has a fold curve, then it is of the form 8 = pc4, for 
some p~ R. Conversely, if the projection of a path of periodic waves onto the (c, #)- 
plane is tangent somewhere to one of the family of quartics f l  = pc4, then that quartic 
is a fold curve for Y .  For a generic path going over a fold, the projections of the path 
and the fold onto the parameter plane meet tangentially, with second-order contact 
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FIQURE 3. Computed path n the (c,S)-plane for waves of wavelength 27t, showing tangency to a 
quartic 8 = pc4 at A x 0.40222 (c % 1.08309). 

(see figure 2).  Hence we have a simple test for a path to go over a fold, namely 
S/g = 4c‘/c, where the prime refers to the derivative along the path. 

We used this criterion to search for fold points in the Stokes family. We computed 
the Stokes family for fixed wavelength h = 2~ in the form of a Fourier expansion of 
the coordinates x and y in terms of the conjugate variables q5 and $ (hodograph 

x+iy = - (~+i$) /c++i (c2+aO)+i  x a,eik@+i~)’e. 
transform) : 00 

k-1 

Note that this differs by the amount +ic2 from the representation used in Longuet- 
Higgins (19844, which reflects our different choice of Bernoulli constant and hence 
mean level. The Fourier coefficients and the velocity c are computed by solving the 
Longuet-Higgins system of quadratic equations (Longuet-Higgins 1984a), for 
equally spaced values of the apparently monotonic parameter 

X 

R = ka, 

in the range [0,6.0], which corresponds to A in the range [0,0.43775]. The advantage 
of B as parameter is that  i t  is infinite for the limiting wave, and equal steps in B seem 
to lead to controllable changes in the wave, in contrast to A .  We truncated a t  some 
order N ,  and used the initial approximation below to get started: 

a, = -1-2B2, a, = B,  a2 = B2, c2 = 1+B2. 

In parallel, we computed 8 using the Fourier coefficients {a,} ; see the Appendix for 
the calculation of 8 in terms of ($> $)-coordinates. A check on the accuracy of the 

k=l 
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s--c QP P I 4  Pd P 
FIGURE 4. Conjectured sequence of Poincark maps on crossing the fold, indicating spatially 
yuasiperiodic, periodic, heteroclinic and chaotic waves coexisting with the Stokes family. s-c, 
indicates the saddle-centre bifurcation ; pd, the period doubling bifurcation : QP,  one of a dense set 
of bifurcation points between s-c and pd of a circle of quasi-periodic solutions; p / q ,  one of a dense 
set of bifurcations between s-c and pd of periodic solutions. Note the formation of transverse 
homoclinic points and resulting chaos, which eventually becomes a complete horseshoe as shown 
in the final section. 

wave computation, which we used to dctcrmine how many Fourier coefficients to 
keep, was to  use the theoretical invariancc of s, computing it a t  both the trough and 
crest and imposing a tolerance on the difference gerr in the values obtained. 

Figure 3 shows a plot in the (c ,  @-plane of the results obtained for B in the abovc 
range. We found a tangency to the family of quartics a t  A z 0.40222 with N = 198 
and Ser, x This corresponds to within numerical error to the previously quoted 
value of A,. Thus we claim that A ,  is a fold point. Furthermore, the tangency was 
found numerically to be of second order, thus verifying the condition b + 0 of SC, and 
in particular ruling out SB1 and SB2. Hence we explain the observed dense intcrval 
of bifurcations and absence of symmetry breaking a t  A,.  

6. Predictions 
The dynamical systems viewpoint suggests the occurrence of many more types of 

uniformly travelling wave with (c,B) close to the fold. The generic behaviour of a 
reversible Hamiltonian system (or family of them) near a saddle-centre is indicated 
in figure 4 (cf. the area-preserving HBnon map (HQnon 1969)). Here we show sketches 
of Poincar6 sections at several parameter values ,u = S/c4 on passing a saddle-centre. 
A PoincarB section in our context is the restriction to  fixed (c, 8) of a transverse four- 
dimensional section C to the saddle-centre orbit in the extended phase space where 
c is regarded as an additional coordinate. The Poincare' map is the first return map 
of this section to  itself. What is sketched is part of the behaviour of the Poincare' map 
for a sequence of parameter values on crossing the fold. 

What generically occurs is a complicated story : besides bifurcation of periodic 
orbits, there are bifurcations of quasi-periodic orbits, heteroclinic orbits and chaotic 
ones. Furthermore, many phenomena have been omitted from our sketch (e.g. 
collapse at 5 resonance). We summarize the main features (for a review see MacKay 
1987) : 

1. A saddle and centre (elliptic orbit) which meet parabolically in a saddle-centre. 
2. Bifurcations of type p / q ,  0 < p / q  < 4, p ,  q coprime, from the elliptic fixed point, 

roughly half of the resulting branches being themselves elliptic initially. 
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3. Bifurcations of further periodic orbits from each branch of elliptic periodic 

4. Bifurcations of asymmetric orbits (e.g. period 6 in the HBnon map; MacKay 

5. Saddle-centre bifurcations of other periodic orbits not attached to the principal 

6. Bifurcation of circles of quasi-periodic orbits from each branch of elliptic 

7. At least four heteroclinic orbits associated with each p/q-bifurcation (q =I= 1,2) ,  

8. Chaotic orbits associated with horseshoes generated by transverse heteroclinic 

9. Eventual formation of a complete horseshoe as the maximal invariant set 

Points 1 and 2 we have already discussed in $4. Some other aspects of this picture 
have also been verified. I n  particular, on the suggestion of one of us, Zufiria (1987b) 
followed many branches of the bifurcation tree (point 3), and found agreement with 
that for the HBnon map, including a symmetry breaking bifurcation a t  period 6 
(point 4). As far as we know, the other aspects mentioned above have not yet been 
looked for. We are developing a scheme to find quasi-periodic waves numerically. 
Given a method for computing general bounded uniformly travelling waves, one 
could draw ‘surface of section’ plots, e.g. plotting ( 7 , ~ )  every time 
Fyo = 0 with Fyyo > 0, and compare with figure 4. 

Similar conclusions should hold for finite depth, though the scaling symmetry is 
then lost. Also if surface tension is added, we except an analogous picture with all the 
generic features of three-degrees-of-freedom Hamiltonian systems, since surface 
tension permits one more oscillatory degree of freedom. 

orbits. 

1982 b ) .  

bifurcation tree (e.g. period 5 in the HBnon map; MacKay 1 9 8 2 ~ ) .  

periodic orbits, which later break into ‘ cantori ’. 

generically transverse. 

orbits. 

locally. 

7. Conjectures about the approach to the highest wave 
Having provided some insight into the bifurcations in the range [O,A+], an 

interesting question is the bifurcation behaviour when A increases well beyond A;. In  
particular, what happens in the limit A +A,,, ? From the asymptotic analysis of 
Longuet-Higgins & Fox (1978), we know that both E and c converge oscillatorily (but 
not in phase) to  limiting values as A approaches A,,,. We expect the same for 8. 
Thus we expect the family of Stokes waves of fixed wavelength to give a spiral 
shaped projection into the (c, @-plane. Indeed one can see the beginnings of such a 
spiral in figure 3. Hence there should be an infinite sequence of fold points (saddle- 
centre bifurcations), two for each full revolution along the spiral, with a pair of 
Floquet multipliers going through + 1 a t  such points (figure 5 ) .  The question is in 
which direction do the Floquet multipliers move on passing round successive folds ? 
Is there just one pair (a,  a-l) for which the residue oscillates repeatedly through 0, 
or is a new pair involved at each fold point, for which the residue passes there from 
negative to positive ? We are developing numerical methods to look a t  this question. 
Possibly the analysis of Maddocks (1987) could also provide an answer. 

Also an interesting theoretical approach to the highest and almost highest waves 
comes out of our Hamiltonian formulation. Our symplectic form on M’ becomes 
degenerate wherever V, = 0. This is the case a t  the crest of the highest wave. Thus 
the Hamiltonian vector field is not defined there. We are investigating the generic 
behaviour of finite-dimensional Hamiltonian systems near degeneracies of the 
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-s 
FIUURE 5. Conjectured continuation of Y to the Stokes waves of highest amplitude, showing 

the conjectured form of the path of waves of fixed wavelength. 

symplectic form, in order to see whether this will shed some light on the behaviour 
of the highest and near highest waves. Preliminary investigations, however, suggest 
that ker w has dimension 1 a t  the highest wave, whereas in finite dimensions it must 
always be even. Hence it is likely that the highest wave is an essentially infinite- 
dimensional problem. 

8. Conclusion 
We have found a Hamiltonian formulation for uniformly travelling irrotational 

gravity waves on ideal fluid of infinite depth, and numerically demonstrated the 
existence of a fold in Stokes’ family of periodic waves. This allows us to interpret and 
understand many numerical results on bifurcation of such waves as generic 
behaviour for a Hamiltonian system, subject to assumption 1 of the existence of an 
appropriate centre manifold. This assumption is likely to be technically difficult to 
justify, but we feel it is conceptually quite natural. Assumption 2 of a generic fold 
is in principal testable : ‘all ’ one has to do is prove the existence of the fold solution 
and compute the relevant combinations of Taylor coefficients with sufficient 
accuracy to be sure that they are non-zero. Our viewpoint also suggests many 
interesting predictions for existence of quasi-periodic, heteroclinic and chaotic 
uniformly travelling waves. 

Our Hamiltonian formulation may well generalize to many other uniformly 
travelling-wave problems, for example, with density stratification and/or vorticity. 
An interesting question is whether all wave systems which have a Hamiltonian 
formulation in time also have a Hamiltonian formulation in space for their uniformly 
travelling waves. In the light of the results of Benjamin (1984) and the present paper, 
the Hamiltonian is likely to be Benjamin’s flow-force invariant in every case, but the 
question is to determine the correct phase space and symplectic form. A recent 
preprint of Bridges (1991) sheds light on this. 

We conclude with some comments on Tanaka’s instability and time-dependence. 
Our fold points, turning points in 8 /c4 ,  appear to be distinct from those in E 

(relevant to temporal stability to superharmonic disturbances ; Tanaka 1985 ; 
Saffman 1985) and in c ,  though we expect them to be interleaved. The quantity E is 
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the energy per unit horizontal length relative to the state of no flow. Using our 
conventions : 

E = (k'+$~~~[(Pu+C)'+P:ldYz). 

For its evaluation in terms of the Fourier coefficients {ak,> see Longuet-Higgins 
(19846). It reaches its first turning point (for waves of fixed wavelength) at 
A ,  x 0.4292, and the first turning point in c is a t  A ,  % 0.4359 (Longuet-Higgins 1985). 
We found the first turning point in E/c4 to  be a t  A x 0.42294 (with N = 288 and 
Ser, x 1.1  x which is in between A; and A,. In particular, it  has nothing to 
do with A, .  We emphasize the importance of the role of S in understanding the 
set of uniformly travelling water waves. 

Finally, uniformly travelling solutions, even though unstable (e.g. by the 
Benjamin-Feir (1967) instability), could be useful in helping to  understand the full 
time-dependent problem, because they and their stable and unstable manifolds form 
a skeleton along which it is possible that a lot. of the dynamics moves (cf. Eckmann 
& Procaccia 1990). 

In  memory of Charles Amick. 
We wish to acknowledge useful discussions with Professors Amick, Benjamin, 

Henyey, Kirchgassner, Mielke and Saffman, and the criticisms of a referee. Also we 
thank Tom Bridges for pointing out and correcting an error. This work was supported 
by the UK Science and Engineering Research Council. 

Appendix. Benjamin's flow-force invariant 
In  Benjamin's original definition (Benjamin 1984), the flow force invariant S is 

given as an integral over y of functions of x and y. We first generalize his definition 
to allow any path of integration from the bottom to the surface: 

2, $(X) 

AT= -tr'c.)+S tc (~ . ,+C)2-~: )dy+Px(P. ,+C)d5,  
u--x 

where the integrand is now an exact differential, giving the same result as before. 
Then, using the hodograph transform, # can be expressed in terms of 4 and @ as 
independent variables, as follows : 

- 
S = -$y2(#, 0) + r'' (&(Q2 +c2)  + C) d$+&(Q2 -2) d#, 

+ X 

where Q2 = ($+y:)-'. To simplify the computation of #from the Fourier expansion 
of the Stokes wave, we chose the integration paths # = 0 (to a crest) and 9 = K (to 
a trough), for which x$ = 0. 
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